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Introduction

The likelihood function represents the basic ingredient of many commonly
used statistical methods for estimation, testing and the calculation of con�-
dence intervals. In practice, much application of likelihood inference relies on
�rst order asymptotic results such as the central limit theorem. The approxi-
mations can, however, be rather poor if the sample size is small or, generally,
when the average information available per parameter is limited. Thanks to
the great progress made over the past twenty-�ve years or so in the theory
of likelihood inference, very accurate approximations to the distribution of
statistics such as the likelihood ratio have been developed. These not only
provide modi�cations to well-established approaches, which result in more
accurate inferences, but also give insight on when to rely upon �rst order
methods. We refer to these developments as higher order asymptotics.

One intriguing feature of the theory of higher order likelihood asymp-
totics is that relatively simple and familiar quantities play an essential role.
The higher order approximations discussed in this paper are for the signi�-
cance function, which we will use to set con�dence limits or to calculate the
p-value associated with a particular hypothesis of interest. We start with
a concise overview of the approximations used in the remainder of the pa-
per. Our �rst example is an elementary one-parameter model where one can
perform the calculations easily, chosen to illustrate the potential accuracy
of the procedures. Two more elaborate examples, an application of binary
logistic regression and a nonlinear growth curve model, follow. All examples
are carried out using the R code of the hoa package bundle.

Basic ideas

Assume we observed n realizations y1, . . . , yn of independently distributed
random variables Y1, . . . , Yn whose density function f(yi; θ) depends on an
unknown parameter θ. Let ℓ(θ) =

∑n
i=1 log f(yi; θ) denote the corresponding
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log likelihood and θ̂ = argmaxθℓ(θ) the maximum likelihood estimator. In
almost all applications the parameter θ is not scalar but a vector of length
d. Furthermore, we may re-express it as θ = (ψ, λ), where ψ is the d0-
dimensional parameter of interest, about which we wish to make inference,
and λ is a so-called nuisance parameter, which is only included to make the
model more realistic.

Con�dence intervals and p-values can be computed using the signi�cance
function p(ψ; ψ̂) = Pr(Ψ̂ ≤ ψ̂;ψ) which records the probability left of the
observed �data point� ψ̂ for varying values of the unknown parameter ψ
(Fraser, 1991). Exact elimination of λ, however, is possible only in few special
cases (Severini, 2000, Sections 8.2 and 8.3). A commonly used approach is to
base inference about ψ on the pro�le log likelihood ℓp(ψ) = ℓ(ψ, λ̂ψ), which we
obtain from the log likelihood function by replacing the nuisance parameter
with its constrained estimate λ̂ψ obtained by maximising ℓ(θ) = ℓ(ψ, λ) with
respect to λ for �xed ψ. Let jp(ψ) = −∂2ℓp(ψ)/∂ψ∂ψ⊤ denote the observed
information from the pro�le log likelihood. Likelihood inference for scalar ψ
is typically based on the

� Wald statistic, w(ψ) = jp(ψ̂)
1/2(ψ̂ − ψ);

� likelihood root,

r(ψ) = sign(ψ̂ − ψ)
[
2{ℓp(ψ̂)− ℓp(ψ)}

]1/2
;

or

� score statistic, s(ψ) = jp(ψ̂)
−1/2dℓp(ψ)/dψ.

Under suitable regularity conditions on f(y; θ), all of these have asymptotic
standard normal distribution up to the �rst order. Using any of the above
statistics we can approximate the signi�cance function by Φ{w(ψ)}, Φ{r(ψ)}
or Φ{s(ψ)}. When d0 > 1, we may use the quadratic forms of the Wald,
likelihood root and score statistics whose �nite sample distribution is χ2

d0
with d0 degrees of freedom up to the second order. We refer the reader to
Chapters 3 and 4 of Severini (2000) for a review of �rst order likelihood
inference.

Although it is common to treat ℓp(ψ) as if it were an ordinary log like-
lihood, �rst order approximations can give poor results, particularly if the
dimension of λ is high and the sample size small. An important variant of
the likelihood root is the modi�ed likelihood root

r∗(ψ) = r(ψ) +
1

r(ψ)
log {q(ψ)/r(ψ)} , (1)

where q(ψ) is a suitable correction term. Expression (1) is a higher order
pivot whose �nite sample distribution is standard normal up to the third
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order. As it was the case for its �rst order counterpart r, the signi�cance
function is approximated by Φ{r∗(ψ)}, and there is a version of r∗ for mul-
tidimensional ψ (Skovgaard, 2001, Section 3.1). More details about the
computation of the q(ψ) correction term are given in the Appendix.

It is sometimes useful to decompose the modi�ed likelihood root as

r∗(ψ) = r(ψ) + rinf(ψ) + rnp(ψ),

where rinf is the information adjustment and rnp is the nuisance parameter

adjustment. The �rst term accounts for non normality of r, while the second
compensates r for the presence of the nuisance parameter λ. Pierce and
Peters (1992, Section 3) discuss the behaviour of these two terms in the
multiparameter exponential family context. They �nd that while rnp is often
appreciable, the information adjustment rinf has typically a minor e�ect,
provided the ψ-speci�c information jp(ψ̂) is not too small relative to the
dimension of λ.

A simple example

Suppose that a sample y1, . . . , yn is available from the Cauchy density

f(y; θ) =
1

π{1 + (y − θ)2}
. (2)

The maximum likelihood estimate θ̂ of the unknown location parameter θ is
the value which maximises the log likelihood function

ℓ(θ; y) = −
n∑
i=1

log{1 + (yi − θ)2}.

For n = 1, we obtain the exact distribution of θ̂ = y from (2) as F (θ̂; θ) =
F (y; θ) = π−1 arctan(y − θ).

Assume that y = 1.32 was observed. In Figure 1 we compare the exact
signi�cance function p(θ; y) = Pr(Y ≤ y; θ) (bold line) to the two �rst order
approximations obtained from the Wald statistic

w(θ) =
√
2(y − θ),

(dotted line), and from the likelihood root

r(θ) = sign(θ̂ − θ)
[
2 log{1 + (y − θ)2}

]1/2
,

(dashed line). We also show the third order approximation Φ{r∗(θ)} (solid
line). Since this is a location model and there is no nuisance parameter, the
statistic q(θ) in (1) is the score statistic

s(θ) =
√
2(y − θ)/{1 + (y − θ)2}
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Figure 1: Signi�cance functions for the location parameter of a Cauchy dis-
tribution when y = 1.32: exact (bold), Wald pivot (dotted), r (dashed) and
r∗ (solid). The vertical dashed line corresponds to the null hypothesis θ = 0.
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(see formula (6) in the Appendix). The code used to generate Figure 1 is
given below.

> ## likelihood pivots

> wald.stat <- function(theta, y) {

+ sqrt(2) * (y - theta) }

> lik.root <- function(theta, y) {

+ sign(y - theta) * sqrt( 2 * log(1 + (y - theta)^2) ) }

> score.stat <- function(theta, y) {

+ ( sqrt(2) * (y - theta) )/( 1 + (y - theta)^2 ) }

> rstar <- function(theta, y) {

+ lik.root(theta, y) + 1/lik.root(theta, y) *

+ log( score.stat(theta, y)/lik.root(theta, y) ) }

> ## significance functions : Figure 1

> theta.seq <- seq(-4, 4, length = 100)

> par( las = 1, mai = c(0.9, 0.9, 0.2, 0.2) )

> plot( theta.seq, pcauchy( q = 1.32 - theta.seq ), type = "l", lwd = 2,

+ ylim = c(0,1), xlab = expression(theta),

+ ylab = "significance function", cex.lab = 1.5, cex.axis = 1.5 )

> lines( theta.seq, pnorm( wald.stat(theta.seq, 1.32) ), lty = "dotted" )

> lines( theta.seq, pnorm( lik.root(theta.seq, 1.32) ), lty = "dashed" )

> lines( theta.seq, pnorm( rstar(theta.seq, 1.32) ), lty = "solid" )

> abline( v = 0, lty = "longdash" )

The vertical dashed line corresponds to the null hypothesis that θ = 0. The
exact p-value is

> ## exact p-value

> round( 2 * ( min( tp <- pt(1.32, df = 1), 1 - tp ) ), digits = 3 )

[1] 0.413

while the �rst and third order approximations yield

> ## Wald pivot p-value

> round( 2 * ( min( tp <- pnorm( wald.stat(0, 1.32) ), 1 - tp ) ),

+ digits = 3 )

[1] 0.062

> ## likelihood root p-value

> round( 2 * ( min( tp <- pnorm( lik.root(0, 1.32) ), 1 - tp ) ),

+ digits = 3 )

[1] 0.155
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> ## modified likelihood root p-value

> round( 2 * ( min( tp <- pnorm( rstar(0, 1.32) ), 1 - tp ) ),

+ digits = 3 )

[1] 0.367

respectively for the Wald, likelihood root and modi�ed likelihood root pivot.
The r∗ statistic is strikingly accurate, while the �rst order approximations
are very poor. This is surprising if we consider that the score function is not
monotonic in y and that only one observation is available.

Suppose now that we observed a sample of size n = 15 from the Student
t distribution with 3 degrees of freedom. It is no longer possible to derive the
exact distribution of the maximum likelihood estimator θ̂, but we may use
the code provided in the marg package of the hoa package bundle to compute
the p-values for testing the signi�cance of the location parameter.

> ## simulated data

> library(marg)

> set.seed(321)

> y <- rt(n = 15, df = 3)

> y.rsm <- rsm(y ~ 1, family = student(3))

> y.cond <- cond(y.rsm, offset = 1)

> summary(y.cond, test = 0)

Formula: y ~ 1

Family: student

Offset: Intercept

Estimate Std. Error

uncond. -0.4208 0.3907

cond. -0.4065 0.4313

Test statistics

---------------

hypothesis : Intercept = 0

statistic tail prob.

Wald pivot -1.0770 0.1408

Wald pivot (cond.) -0.9426 0.1729

Likelihood root -1.0250 0.1528

Modified likelihood root -0.9277 0.1768

"q" correction term: -0.9277

Diagnostics:

-----------
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INF NP

0.2057 0.3291

Approximation based on 20 points

The previous set of instructions yields the p-values 0.282 (Wald), 0.306
(r) and 0.354 (r∗). The di�erence between �rst order and higher order
approximations is slightly smaller than it was the case before. For this
particular model a sample size of n = 15 still does not provide enough
information on the scalar parameter θ to wipe out completely the e�ect of
higher order corrections.

Higher order asymptotics in R

hoa is an R package bundle which implements higher order inference for
three widely used model classes: logistic regression, linear non normal mod-
els and nonlinear regression with possibly non homogeneous variance. The
corresponding code is organised in three packages, namely cond, marg and
nlreg. We already saw a (very elementary) application of the marg code.
The two examples which follow will give a glimpse of the use of the routines
in cond and nlreg. Attention is restricted to the calculation of p-values and
con�dence intervals, although several routines for accurate point estimation
and model checking are also available. The hoa bundle includes a fourth
package, called sampling, which we will not discuss here. It implements a
Metropolis-Hastings sampler which can be used to simulate from the condi-
tional distribution of the higher order statistics considered in marg.

The hoa package bundle is be available on CRAN. More examples of
applications, and generally of the use of likelihood asymptotics, are given in
Brazzale et al. (to appear).

Example 1: Binary data

Collet (1998) gives a set of binary data on the presence of a sore throat in a
sample of 35 patients undergoing surgery during which either of two devices
was used to secure the airway.

> ## `airway' data

> library(cond)

> head( airway, n = 3 )

response age sex lubricant duration type

1 0 48 1 0 45 0

2 0 48 1 0 15 0

3 1 39 0 1 40 0
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In addition to the variable of interest, device type (1=tracheal tube or 0=la-
ryngeal mask), there are four further explanatory variables: the age of the
patient in years, an indicator variable for sex (1=male, 0=female), an in-
dicator variable for lubricant use (1=yes, 0=no) and the duration of the
surgery in minutes. The observations form the data frame airway which is
part of the hoa bundle.

A natural starting point for the analysis is a logistic regression model
with success probability of the form

Pr(Y = 1;β) =
exp(x⊤β)

1 + exp(x⊤β)
,

where x represents the explanatory variables associated with the binary
response Y (1=sore throat and 0=no sore throat). The following set of
instructions �ts this model to the data with all �ve explanatory variables
included.

> ## binomial model fit

> airway.glm <- glm( formula(airway), family = binomial, data = airway )

> summary( airway.glm )

Call:

glm(formula = formula(airway), family = binomial, data = airway)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.75035 2.08914 -1.316 0.1880

age 0.02245 0.03763 0.597 0.5507

sex1 0.32076 1.01901 0.315 0.7529

lubricant1 0.08448 0.97365 0.087 0.9309

duration 0.07183 0.02956 2.430 0.0151 *

type1 -1.62968 0.94737 -1.720 0.0854 .

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 46.180 on 34 degrees of freedom

Residual deviance: 29.477 on 29 degrees of freedom

AIC: 41.477

Number of Fisher Scoring iterations: 5

The coe�cient of device type is only marginally signi�cant.
As in the previous example we may wonder whether the sample size is

large enough to allow us to rely upon �rst order inference. For the airway
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data we have n = 35 and p = 5, so we might expect higher order corrections
to the usual approximations to have little e�ect. We can check this using
the routines in the cond package.

> ## higher order inference

> airway.cond <- cond( airway.glm, offset = type1 )

> summary( airway.cond ) # produces 95% confidence intervals

Formula: response ~ age + sex + lubricant + duration + type

Family: binomial

Offset: type1

Estimate Std. Error

uncond. -1.630 0.9474

cond. -1.394 0.8466

Confidence intervals

--------------------

level = 95 %

lower two-sided upper

Wald pivot -3.486 0.2271

Wald pivot (cond. MLE) -3.053 0.2656

Likelihood root -3.682 0.1542

Modified likelihood root -3.130 0.2558

Modified likelihood root (cont. corr.) -3.592 0.5649

Diagnostics:

-----------

INF NP

0.05855 0.51426

Approximation based on 20 points

> plot(airway.cond, which = 4) # Figure 2

As our model is a canonical exponential family, the correction term q(ψ) in
(1) involves the Wald statistic w(ψ) plus parts of the observed information
matrix (see formula (5) in the Appendix). The 95% con�dence intervals
obtained from the Wald pivot and from the likelihood root are respectively
(−3.486, 0.227) and (−3.682, 0.154). The third order statistic r∗ yields a
95% con�dence interval of (−3.130, 0.256). First and third order results are
rather di�erent, especially with respect to the lower bound. Figure 2 plots the
pro�les of the �rst and third order pivots w(ψ) (dashed line), r(ψ) (solid line)
and r∗(ψ) (bold line). The correction term q(ψ) is particularly signi�cant
for values of ψ belonging to the lower half of the con�dence interval. The
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nuisance parameter correction is rnp = 0.51, while rinf = 0.059 is about ten
times smaller.
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Figure 2: airway data analysis: pro�le plots of the pivots w(ψ) (dashed
line), r(ψ) (solid line) and r∗(ψ) (bold line), where ψ is the coe�cient of the
covariate device type.

Example 2: Nonlinear regression

A simple illustration of nonlinear regression is Example 7.7 of Davison and
Hinkley (1997), which refers to the calcium data of package boot. This data
set records the calcium uptake (in nmoles/mg) of cells y as a function of time
x (in minutes), after being suspended in a solution of radioactive calcium.

> ## `calcium' data

> library(boot)

> head( calcium, n = 3 )

time cal

1 0.45 0.34170

2 0.45 -0.00438

3 0.45 0.82531
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The variables cal and time represent respectively the calcium uptake and
suspension time. There are 27 observations in all. The model is

yi = β0{1− exp(−β1xi)}+ σiεi, (3)

where β0 and β1 are unknown regression coe�cients and the error term
εi ∼ N(0, 1) is standard normal. We complete the de�nition of model (3)
by allowing the response variance σ2i = σ2(1+xi)

γ to depend nonlinearly on
the time covariate through the two variance parameters γ and σ2.

Model (3) is �tted by maximum likelihood using the nlreg routine of
package nlreg.

> library(nlreg)

> ## maximum likelihood fit

> calcium.nl <- nlreg( cal ~ b0 * (1 - exp(-b1 * time)),

+ weights = ~ (1 + time)^g, data = calcium,

+ start = c(b0 = 4, b1 = 0.1, g = 0) )

> summary( calcium.nl ) # yields estimates and standard errors

differentiating mean function -- may take a while

differentiating variance function -- may take a while

Call:

nlreg(formula = cal ~ b0 * (1 - exp(-b1 * time)), weights = ~(1 +

time)^g, data = calcium, start = c(b0 = 4, b1 = 0.1, g = 0))

Regression coefficients:

Estimate Std. Error z value Pr(>|z|)

b0 4.31698 0.32274 13.38 < 2e-16 ***

b1 0.20746 0.03589 5.78 7.47e-09 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Variance parameters:

Estimate Std. Error

g 0.5364 0.3196

logs -2.3426 0.6338

No interest parameter

Total number of observations: 27

Total number of parameters: 4

-2*Log Likelihood 39.31

Algorithm converged in 3 iterations
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This yields β̂0 = 4.317 (s.e. 0.323), β̂1 = 0.207 (s.e. 0.036), γ̂ = 0.536 (s.e.
0.320), and log σ̂2 = −2.343 (s.e. 0.634). Note that the baseline variance
σ2 is �tted on the logarithmic scale. This does not a�ect inference based
on the r and r∗ statistics, which are parametrisation invariant, and ensures
positive values for σ2 when the Wald statistic is used. The profile method
of the nlreg package can be used to set various �rst and higher order 95%
con�dence intervals for the variance parameter γ.

> ## pivot profiling for \gamma

> calcium.prof <- profile( calcium.nl, offset = g )

differentiating mean function -- may take a while

differentiating variance function -- may take a while

> summary( calcium.prof )

Two-sided confidence intervals for g

lower upper

r* - Fr (0.95) -0.14270 1.191

r* - Sk (0.95) -0.14250 1.190

r (0.95) -0.12431 1.154

Wald (0.95) -0.08992 1.163

Estimate Std. Error

g 0.5364 0.3196

14 points calculated exactly

50 points used in spline interpolation

INF (Sk): 0.05799

INF (Fr): 0.0699

NP (Sk): 0.1523

NP (Fr): 0.1413

A di�culty we had not to face in the previous two examples is that it is no
longer possible to calculate the correction term in (1) exactly. The profile
function implements two slightly di�erent versions of the higher order pivot
r∗ which we obtain by using the two approximations of q(ψ) discussed in the
Appendix. The four statistics agree in letting us question the heterogeneity
of the response variance.

Davison and Hinkley (1997, p. 356) consider not only inference on the
nonlinear mean function, but also on other aspects of the model such as the
�proportion of maximum�, π = 1 − exp(−β1x). For x = 15 minutes they
give the estimate π̂ = 0.956 and the associated 95% bootstrap con�dence
interval (0.83, 0.98). We may obtain the corresponding �rst and higher order
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likelihood analogues by reparametrizing the mean response curve into (π, β0)
and re-running the whole analysis. This time we assume that the response
variance is homogeneous.

> ## inference on proportion of maximum

> calcium.nl <- nlreg( cal ~ b0 * (1 - exp(- log(1 + exp(psi)) * time / 15)),

+ data = calcium, start = c(b0 =4.3, psi =2) )

> calcium.prof <- profile( calcium.nl, offset = psi )

differentiating mean function -- may take a while

differentiating variance function -- may take a while

> calcium.sum <- summary( calcium.prof )

> exp(calcium.sum$CI) / (1 + exp(calcium.sum$CI)) # 95% confidence intervals for \pi

lower upper

r* - Fr (0.95) 0.8748270 0.9897534

r* - Sk (0.95) 0.8715957 0.9892020

r (0.95) 0.8777616 0.9882782

Wald (0.95) 0.8728598 0.9857717

Because of the constraint that π must lie in the interval (0, 1), we actually
�t the model for ψ = log{π/(1 − π)} and back-transform to the original
scale by π = exp(ψ)/{1 + exp(ψ)}. This yields the intervals (0.87, 0.99)
and (0.88, 0.99) for respectively the Wald and likelihood root statistics and
(0.87, 0.99) for both versions of r∗, which is in agreement with the bootstrap
simulation.

The profile method of the nlreg package provides also all elements
needed to display graphically a �tted nonlinear model.

> ## profile and contour plots : Figure 3

> calcium.prof <- profile( calcium.nl )

long calculation --- may take a while

differentiating mean function -- may take a while

differentiating variance function -- may take a while

> par( las = 1, mai = c(0.5, 0.5, 0.2, 0.2) )

> contour( calcium.prof, alpha = 0.05, cl1 = "black", cl2 = "black",

+ lwd2 = 2 )

Higher order method used: Skovgaard's r*

The result is Figure 3. The contourmethod of the nlreg package represents,
in fact, an enhanced version of the original algorithm by Bates and Watts
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(1988, Chapter 6), to which we refer the reader for the interpretation of
these plots. The dashed, solid and bold lines represent respectively the Wald
pivot, the likelihood root r and Skovgaard's (1996) approximation to the r∗

statistic (see the Appendix). The bivariate contour plots in the lower triangle
are plotted on the original scale, whereas the ones in the upper triangle are
on the r scale. Figure 3 highlights di�erent aspects of the model �t. First,
the maximum likelihood estimate of log σ2 is biased downwards, which we
can tell from the fact the corresponding r∗ pro�le is shifted to the right of
r. Otherwise, there does not seem to be a huge di�erence between �rst and
higher order methods as the corresponding pro�les and contours are not too
di�erent. The �nite sample estimates of β0 and ψ are strongly correlated,
while they are almost independent of log σ̂2. The contours of r(ψ) and r∗(ψ)
are close to elliptic which indicates that the log likelihood function is not too
far from being quadratic. A further indication for a small curvature e�ect
due to parametrisation is that the contours on the original and on the r scale
look similar.
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Appendix: q(ψ) correction term

In this appendix we give the general expression of the correction term q(ψ) in
(1) and the explicit formulae for two special model classes, that is, linear ex-
ponential families and regression-scale models. We will furthermore discuss
two ways of approximating q(ψ) in case we cannot calculate it explicitly.

Basic expression

Let ℓ(θ) = ℓ(ψ, λ) be the log likelihood function, θ̂ = (ψ̂, λ̂) the maxi-
mum likelihood estimator of the d-dimensional parameter θ = (ψ, λ), and
j(θ) = −∂2ℓ(θ)/∂θ∂θ⊤ the d × d observed information matrix. Denote λ̂ψ
the constrained maximum likelihood estimator of the nuisance parameter λ
given the value of the scalar parameter of interest ψ. Write jλλ(θ) the corner
of j(θ) = j(ψ, λ) which corresponds to λ, and θ̂ψ = (ψ, λ̂ψ).

The basic expression for q(ψ) is

q(ψ) =
|ℓ;θ̂(θ̂)− ℓ;θ̂(θ̂ψ) ℓλ⊤;θ̂(θ̂ψ)|{

|jλλ(θ̂ψ)||j(θ̂)|
}1/2

, (4)

14



Higher order method used: Skovgaard's r*
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Figure 3: calcium uptake data analysis: pro�le plots and pro�le pair sketches
for the parameters β0, ψ and log σ2 using the Wald statistic (dashed), the
likelihood root r (solid) and Skovgaard's (1996) approximation to r∗ (bold).
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where | · | indicates determinant (Severini, 2000, Section 7.4.1). The d × d
matrix appearing in the numerator of q(ψ) consists of a column vector formed
using so-called sample space derivatives

ℓ;θ̂(θ) =
∂ℓ(θ; θ̂|a)

∂θ̂
,

and a d× (d− 1) matrix of mixed derivatives

ℓλ⊤;θ̂ =
∂2ℓ(ψ, λ; θ̂|a)

∂λ⊤∂θ̂
.

The former are de�ned as the derivatives of the log likelihood function
ℓ(ψ, λ; θ̂|a) with respect to the maximum likelihood estimator θ̂; mixed
derivatives furthermore involve di�erentiation with respect to the whole pa-
rameter θ or parts of it (Severini, 2000, Section 6.2.1). Note that to do so,
the data vector has to be re-expressed as y = (θ̂, a), where a represents the
observed value of an ancillary statistic upon which we condition.

Approximations

Exact computation of the sample space derivatives involved in expression (4)
requires that we are able to write the data vector y as a function of the max-
imum likelihood estimator θ̂ and of an ancillary statistic a. This is, with few
exceptions, only feasible for linear exponential families and transformation
models, in which cases the q(ψ) term involves familiar likelihood quantities.
If the reference model is a full rank exponential family with ψ and λ taken
as canonical parameters, the correction term

q(ψ) = w(ψ)
{
|jλλ(θ̂)|/|jλλ(θ̂ψ)|

}1/2
(5)

depends upon the Wald statistic. In case of a regression-scale model, that
is, of a linear regression model with non necessarily normal errors,

q(ψ) = s(ψ)
{
|jλλ(θ̂ψ)|/|jλλ(θ̂)|

}1/2
(6)

involves the score statistic. Here, ψ is linear in (β, σ) and the nuisance
parameter λ is taken linear in β and ξ = log σ, where β and σ represent
respectively the regression coe�cients and the scale parameter.

In general, the calculation of the sample space derivatives ℓ;θ̂(θ) and

mixed derivatives ℓλ⊤;θ̂(θ) may be di�cult or impossible. To deal with this
di�culty, several approximations were proposed. For a comprehensive re-
view we refer the reader to Section 6.7 of Severini (2000). Here we will
mention two of them. A �rst approximation, due to Fraser et al. (1999),
is based upon the idea that in order to di�erentiate the likelihood function
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ℓ(θ; θ̂|a) on the surface in the n-dimensional sample space de�ned by condi-
tioning on a we need not know exactly the transformation from y to (θ̂, a),
but only the d vectors which are tangent to this surface (Severini, 2000, Sec-
tion 6.7.2). Skovgaard (1996) on the other hand suggests to approximate
the sample space and mixed derivatives by suitable covariances of the log
likelihood and of the score vector (Severini, 2000, Section 6.7.3). While the
�rst approximation maintains the third order accuracy of r∗, we lose one
degree when following Skovgaard's (1996) approach. See Sections 7.5.3 and
7.5.4 of Severini (2000) for the details.

The hoa package

The expressions of q(ψ) implemented in the hoa package bundle are: i) (5)
and (6) for respectively the cond and marg packages (logistic and linear
non normal regression), and ii) the two approximations discussed above for
the nlreg package (nonlinear heteroscedastic regression). The formulae are
given in Brazzale et al. (to appear). The nlreg package also implements
Skovgaard's (2001, Section 3.1) multiparameter extension of the modi�ed
likelihood root. The implementation of the cond and nlreg packages is
discussed in Brazzale (1999) and Bellio and Brazzale (2003).
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